可构造宇宙V=L:
7 ?- n q l9 F4 _3 v. L0 M) R定义Def()为一个包含所有X子集的集合。一个X的子集x位于Def(X)当且仅当存在一个一阶逻辑公式φ和u,u,u,……∈X使得
0 U. F' Z9 y! X+ r* w" ]x = {y∈X :φ[y,u,u,u,……]
" C& n8 a. ]: T: V/ b9 h然后:9 x' G9 Q5 g! L$ d w
L=) S& e2 o& u& O! C3 l
L=Def(L1)={}=14 r* O0 Z, ^1 @" Y. m
Ln+1=Def(Ln)=n4 {) B$ Z4 K/ N0 w/ Z O! p" J
Lω=∪_k<ω Lω
; l" ]( \$ G/ [7 V* |8 W' S6 ~Lλ=∪_k<λ λ is a limit ordinal
* m) F6 A" r5 O" z, ^3 T7 q/ |是极限序数5 ?: a& q0 u# u# i6 c; u" Q
L=∪_k Lk,k跑遍所有序数
* N2 ]6 X3 m5 k遗传序数可定义宇宙HODs:& l6 k3 }6 L5 I
, o9 S1 {, [4 ^* y' }
HOD=V
. _3 y) P4 M, ?' H X% N
; Y" G- t; H( B8 l3 q* u$ i, oHOD=HOD^% ~, L) r; A" Z9 R9 l
( W& p5 a: c3 S' b9 j; ~. \HOD^ω=∩_n<ω HOD
" Z: U( Q7 N0 G) H% _# c; w' q4 K! g% l6 Y$ {
H=V
+ X6 A& T% t4 P% r5 M, Y: e9 x$ j) J* C& l8 c
H^α+1=HOD^0 w9 m; j! A7 z4 h( y0 B( H
7 ?% D; i- K& \4 t
HOD^η=∩α<η HOD^α( s" H+ M0 g Y) C9 g* I
% ?5 s* M' Q/ Z9 P i0 `对所有HODs的脱殊扩张. R1 Q! m0 e; [9 k
2 Y' j1 u: i- A/ v' H
gHOD=∩HOD^V[G]
* r+ {3 ~, \8 ]或许还有:4 M* _# [6 b% ?0 h- D2 ^+ n
序数宇宙V=ON
; L8 h( U8 Q; S) k良序宇宙V=WO
$ h, P; O( X& ?7 I) j6 v" i, V' `良基宇宙V=WF' ~5 A _& U P- I1 ?
于是可能:1 ?4 [) J5 X( k4 A
V=L=ON=WO=WF=HOD=Ord=终极L=………… |